Automatic Recognition of Offline Handwritten Urdu Digits In Unconstrained Environment Using Daubechies Wavelet Transforms
نویسندگان
چکیده
This paper presents an optical character recognition system for the handwritten Urdu Digits. A lot of work has been done in recognition of characters and numerals of various languages like Devanagari, English, Chinese, and Arabic etc. But in case of handwritten Urdu Digits very less work has been reported. Different Daubechies Wavelet transforms are used in this work for feature extraction. Also zonal densities of different zones of an image have been used in the feature set. In this work, 200 samples of each digit have been used. The back propagation neural network has been used for classification. An average recognition accuracy of 92.07% has been achieved.
منابع مشابه
Off-line Arabic Handwritten Recognition Using a Novel Hybrid HMM-DNN Model
In order to facilitate the entry of data into the computer and its digitalization, automatic recognition of printed texts and manuscripts is one of the considerable aid to many applications. Research on automatic document recognition started decades ago with the recognition of isolated digits and letters, and today, due to advancements in machine learning methods, efforts are being made to iden...
متن کاملMulti-font Numerals Recognition for Urdu Script based Languages
Handwritten character recognition of Urdu script based languages is one of the most difficult task due to complexities of the script. Urdu script based languages has not received much attestation even this script is used more than 1/6th of the population. The complexities in the script makes more complicated the recognition process. The problem in handwritten numeral recognition is the shape si...
متن کاملOptical Character Recognition for Isolated Offline Handwritten Devanagari Numerals Using Wavelets
This paper presents a method of recognition of isolated offline handwritten Devanagari numerals using wavelets and neural network classifier. This method of optical character recognition takes the handwritten numeral image as input. After pre-processing, it is subjected to single level wavelet decomposition using Daubechies-4 wavelet filter. This wavelet decomposition allows viewing the input n...
متن کاملUse of the Shearlet Transform and Transfer Learning in Offline Handwritten Signature Verification and Recognition
Despite the growing growth of technology, handwritten signature has been selected as the first option between biometrics by users. In this paper, a new methodology for offline handwritten signature verification and recognition based on the Shearlet transform and transfer learning is proposed. Since, a large percentage of handwritten signatures are composed of curves and the performance of a sig...
متن کاملPersian Handwritten Digit Recognition Using Particle Swarm Probabilistic Neural Network
Handwritten digit recognition can be categorized as a classification problem. Probabilistic Neural Network (PNN) is one of the most effective and useful classifiers, which works based on Bayesian rule. In this paper, in order to recognize Persian (Farsi) handwritten digit recognition, a combination of intelligent clustering method and PNN has been utilized. Hoda database, which includes 80000 P...
متن کامل